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Abstract
We review some models of granular materials fluidized by means of external
forces, such as random homogeneous forcing with damping, vibrating plates,
flow in an inclined channel and flow in a double well potential. All these
systems show the presence of density correlations and non-Gaussian velocity
distributions. These models are useful in understanding the role of a kinetically
defined ‘temperature’ (in this case the so-called granular temperature) in a non-
equilibrium stationary state. In the homogeneously randomly driven gas the
granular temperature is different from that of the driving bath. Moreover, two
different granular materials mixed together may stay in a stationary state with
different temperatures. At the same time, the granular temperature determines
(as in equilibrium systems) the escape time in a double well potential.

1. Introduction

Granular materials such as sand, grains and powders exhibit a variety of remarkable behaviours
which, in the last decades, have been extensively studied through a number of experiments,
computer simulations and analytical techniques [1–3]. This paper aims to review the conceptual
and technical difficulties encountered when the same statistical approach successfully applied
to simple fluids is generalized and extended to study granular systems. The question whether
the dynamics of a collection of inelastic particles is amenable to a hydrodynamical and even
‘thermodynamical’ description is a long-standing and still controversial issue of the general
theory of granular matter.

In 1995, Du et al [4] proposed and studied a minimal model of a one-dimensional granular
gas where N hard rods, constrained to move on the segment [0, L], interact by instantaneous
binary inelastic collisions with a restitution coefficient r < 1. A thermal wall of temperature Tb,
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at the boundary x = 0, prevents the system from the cooling caused by inelasticity. When the
leftmost particle bounces against the wall, it is reflected with a velocity drawn from a Gaussian
distribution with variance Tb, and transfers the energy to the rest of the system. The main finding
of the authors was that even at very small dissipation 1−r ∼ 0, hydrodynamic equations failed
to reproduce the essential features of simulations. Simulations, indeed, showed that the system
sets into an ‘extraordinary’ state with most of the particles moving slowly and very near the
right wall, while most of the kinetic energy is concentrated in the leftmost particle. Reducing
the dissipativity 1 − r at fixed N , the cluster near the wall becomes smaller and smaller. The
authors also pointed out that a qualitative explanation of this clustering phenomenon could be
found in the Boltzmann equation in the limit N → ∞, r → 1 with N(1 − r) ∼ 1. We have
reproduced the results of Du et al and found that the breakdown of the hydrodynamic approach
can be ascribed to the peculiarities of the model.

First, the one-dimensional character generally represents an obstacle to the development of
the hydrodynamic theory even for elastic systems, since transport coefficients usually diverge
with system size at low dimension. Of course exceptions exist as shown in [5], where,
under some particular circumstances, the hydrodynamics of a 1D inelastic system has been
worked out.

Second, this model lacks a proper thermodynamic limit because when N, L → ∞ (with
N/L = constant), both the mean kinetic energy and the mean dissipated power reduce to zero.
This is consistent with the scenario suggested by the authors in which energy equipartition is
broken and the description of the system in terms of macroscopic smooth quantities no longer
holds. The proposed mechanism of energy injection may become strongly inefficient because,
even at moderate inelasticities, it may involve only a few particles near the thermal wall. In
this condition, thermodynamic observables such as mean kinetic energy or mean dissipated
power are non-extensive quantities.

Third, the system has no proper elastic limit; indeed, when the dissipation is removed
by setting r → 1, the kinetic energy increases indefinitely due to the mechanical action of
the wall that continuously injects energy into the system. The situations become even worse
upon reducing the energy injection to zero to take the elastic limit: elastic collisions simply
exchange velocities and the initial velocity distribution does not evolve at all.

In the following, we present and study a class of models where the aforementioned
‘pathologies’ are partly removed. The common feature of these models is the presence of a
stochastic external driving which, acting statistically on each particle, destroys the anomalous
configurations observed in [4]. Furthermore, the action of a damping term guarantees the
existence of a smooth elastic limit. We shall see that although such systems display a ‘less
pathologic’ behaviour, the existence of a hydrodynamical interpretation is still critical and
dubious because it is affected by general conceptual problems [6]. The same difficulties, on the
other hand, are also encountered in the interpretation of experimental studies on forced granular
systems. For instance, a well known experiment by Jaeger et al [7] considers a container full
of sand shaken from the bottom plate. When the shaking is very rapid, observations indicate
that a few-grain thick boundary layer forms near the floor. Particles inside this layer move very
quickly with sudden changes in their dynamics. At the top of the container, in contrast, particles
move ballistically, undergoing very few collisions in their trajectory (Knudsen regime). Both
layers cannot be described by hydrodynamics because the assumption of smooth variation
of the velocity field is not satisfied. The same happens in molecular gases; however, for
granular systems such boundary layers are macroscopic, and this seriously affects the prediction
capability of hydrodynamic theories. Furthermore, the lack of a neat scale separation between
the mean free time and the vibration period makes any hydrodynamic approach practically
meaningless. On the other hand, it is also intrinsically unable to describe the slow grain
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dynamics at slow tapping rates. In this case, indeed, the system reaches a sort of mechanical
equilibrium characterized by an almost complete absence of motion [8]. Such an equilibrium
is reached at different densities which—as the tapping goes on—slowly change with ‘history’-
dependent evolutions. This memory effect cannot be captured by the set of partial differential
equations concerning ordinary hydrodynamics.

The paper is organized as follows. In section 2, we describe a model of granular gas
introduced to remove the ‘pathologies’ affecting previous models, such as the lack of a well
defined thermodynamic or elastic limit. In sections 3 and 4, we discuss simulations on different
models for driven granular gas with non-homogeneous energy sources. In section 5, we
discuss the fundamental problem of scale separation which undermines the development of a
general hydrodynamic theory for granular flows. After having summarized the main failures of
thermodynamic and hydrodynamic approaches to granular systems, we present, in section 6, a
numerical experiment where thermodynamic concepts positively apply. In section 7 we finally
draw some conclusions.

2. Homogeneous driving by random forces

In [9, 10], some of us introduced a kinetic model to describe a granular gas kept in a stationary
state under the effect of both a damping term and external stochastic forcing. This model aims
to reproduce the experimental situations in which an inelastic system is forced by shearing,
shaking, air fluidization, and so on. All these energy sources supply the system with an
‘internal energy’ able to randomize the relative particle velocities. They basically act as a
temperature source [11, 12] which favours the onset of steady regimes, but which, at the same
time, introduces a systematic (non-random) friction which can be modelled by an effective
damping term in the particle dynamics.

The randomly driven granular gas defined in [9] consists of an assembly of N identical
hard objects (spheres, discs or rods) of mass m and diameter σ . We shall set m = 1 and kB = 1
(Boltzmann’s constant) in the following and assume that the grains move in a box of volume
V = Ld . The dynamics of the system is the outcome of three physical effects: friction with
the surroundings, random accelerations due to external driving, and inelastic collisions among
the grains. The first two ingredients are modelled in the shape of Kramers’ equations between
two consecutive collisions:

d

dt
xi(t) = vi(t) (1)

d

dt
vi(t) = −vi(t)

τb
+

√
2Tb

τb
ηi(t). (2)

The parameters τb (decorrelation time) and Tb (temperature) characterize the properties
of the external bath. The function ηi (t) is the standard white noise: 〈ηi (t)〉 = 0 and
〈ηα

i (t)ηβ

j (t
′)〉 = δ(t − t ′)δi jδαβ (α, β = x, y, z). This choice guarantees that Einstein’s

relation [13] is fulfilled in the elastic or collisionless regime. The inelastic collisions, in
contrast, are considered at the kinetic level, because an impact instantaneously transforms
the velocities of the grains involved. When particles i and j collide, their velocities are
instantaneously changed into new velocities according to the following collision rule:

v′
i = vi − 1 + r

2
((vi − v j) · n̂)n̂ (3)

v′
j = v j +

1 + r

2
((vi − v j) · n̂)n̂ (4)
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Figure 1. Density snapshots in the
homogeneously driven granular gas:
instantaneous plot of positions in 2D,
in the inelastic regime. N = 5000,
τc = 0.5, τb = 100 and r = 0.1.

where n̂ is the unit vector along the direction joining the centres of the particles; r is called the
normal restitution coefficient. These rules reduce the longitudinal component of the relative
velocity for 0 � r < 1, which in contrast is only inverted at r = 1.

This model has been studied in detail [9, 10] through simulations using direct simulation
Monte Carlo (DSMC) [14] and molecular dynamics (MD) algorithms [15] as well. The first
method treats collisions stochastically, assuming the hypothesis of molecular chaos between
particles at a distance smaller than σB (a parameter which is chosen to be smaller than the mean
free path). It can be regarded as a sort of spatially inhomogeneous Monte Carlo technique. The
second method implements the dynamics of the model without any approximation, requiring,
however, much more computational resource.

In the dynamics of the N particles defined by equations (1), (2) and (3), (4), the relevant
parameters are: the coefficient of normal restitution r , which determines the degree of
inelasticity, and the ratio τb/τc of the forcing characteristic time (bath) to the ‘global’ mean
free time between consecutive collisions. On the basis of these two parameters, the dynamics
of our model exhibits two fundamental regimes:

• A stationary ‘collisionless’ regime occurring when τb � τc. In this regime we expect
that, after a transient time of order τb, the system reaches the stationary behaviour of
independent Brownian particles characterized by homogeneous density, Maxwell velocity
distributions and the absence of correlations.

• A stationary ‘colliding’ regime obtained when τb � τc. If the collisions are inelastic, this
condition corresponds to the cooling limit, and for times larger than τb, the model evolves
with anomalous statistical properties.

Numerical simulations show that the thermodynamic limit on this model is well defined;
thus one of the problems affecting the Du et al system is solved. The dynamics in the colliding
regime (τb � τc) and in the presence of inelasticity (r < 1) results in a stationary state with a
temperature Tg always lower than Tb. The granular temperatures approaches Tb monotonically
as r → 1, so the elastic limit can be safely taken without energy catastrophe. The fact that
(when r < 1 and τb � τc) Tg < Tb is the principal indication that our model of granular gas is
a genuine non-equilibrium system in a statistically stationary state. This state is characterized
by an inhomogeneous spatial arrangement of grains (clustering) and non-Gaussian velocity
distributions. Figure 1 displays a snapshot, from 2D simulations, of the particle positions in a
strong clustering regime. The inelastic regime exhibits much stronger density fluctuations than



Models of fluidized granular materials S2719

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0 10 20 30 40 50 60 70

f M
(m

)

m

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

f M
(m

)

m

(a) (b)

0 10 20 30 40 50 60

Figure 2. Density fluctuations in the homogeneously driven granular gas. Left: 1D case, with
N = 300; the × are obtained in a collisionless regime, while the + correspond to a colliding regime
with r = 0.7. Right: 2D case, with N = 500; the + are obtained in an almost elastic collisionless
regime, the × corresponds to a colliding regime with r = 0.5. In both figures the collisionless
case (equal to an elastic case) is fitted by a Poisson distribution, while the colliding inelastic case
is fitted by an inverse power law with exponential cut-off, as discussed in the text.

those occurring in the collisionless limit, τb � τc, where grains, instead, occupy the whole
volume uniformly with no correlations.

In figure 2, we show the probability distribution of the ‘cluster mass’, m, defined as the
number of particles found in a box of volume V/M . We divided the container of the system into
M identical boxes with an elementary volume V/M . In the collisionless regime, the number of
particles in a box of size V/M follows a Poisson-like distribution with average 〈m M 〉 = N/M .
In contrast, the colliding regime (τb � τc) generates very different density distributions which
can be fitted by a power law m−αcl

M exp(−cclm M) corrected by an exponential cut-off only due to
finite size effects. In most of the simulations, we found αcl > 1 and 1/ccl slightly greater than
N/M . The power-law behaviour is the signature of self-similarity in the distribution of clusters
occurring with no characteristic size. These anomalous density fluctuations are not an artefact
produced by the simulation technique because they have been observed using both DSMC
and MD algorithms. We have characterized the emergence of spatial correlations through the
measure of the correlation dimension d2 (Grassberger and Procaccia [16]). The latter is defined
by the scaling behaviour C(R) ∼ Rd2 of the cumulated particle–particle correlation function

C(R) = 1

N(N − 1)

∑
i 	= j

�(R − |xi(t) − x j(t)|) ∼ Rd2 (5)

where the over-bar indicates the time averaging taken after the system reaches a steady regime,
R is the spatial resolution and �(u) is the unitary step function. For homogeneous density,
d2 coincides with the Euclidean dimension d2 = d , while the result d2 < d is an indication
of a fractal (self-similar) density. Model simulations carried out in the collisionless regime
always lead to homogeneous distributions of particles (figure 3), while fractal densities often
occur in inelastic colliding regimes (τb � τc). This is consistent with the scenario provided
by the mass distribution of clusters discussed above. Another peculiarity of a driven granular
gas is the behaviour of the velocity distribution P(v). Typical P(v) for our model in 1D and
2D simulations are shown in figure 4. We see a strong difference between the collisionless (or
elastic) regime, τc � τb and the inelastic colliding regime τc � τb. The collisionless regime
is characterized by a Gaussian P(v) while, in the colliding regime, a non-Gaussian behaviour
appears as an enhancement of high-energy tails, and the fitting procedure of such tails provides
the direct evaluation of the deviation from the Gaussian regime. In our simulations, we found
evidence for exp(−v3/2) tails, in agreement with the theoretical prediction by Ernst and van
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Figure 3. Density–density correlation function in the homogeneously driven granular gas. Left,
in 1D (N = 2000) and right, in 2D (N = 5000). In both graphs the top (lower slope) curve
corresponds to a colliding inelastic case, while the curve with the larger slope (corresponding to
the exact dimensionality of the space) is obtained in a collisionless regime (τc � τb).
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Figure 4. Velocity fluctuations in the homogeneously driven granular gas, in 1D (left) and 2D
(right). The two situations in the left graph correspond to a collisionless regime (Gaussian fit) and
colliding inelastic regime (non-Gaussian fit). The three situations in the right graph corresponds to:
(a) a collisionless regime (τ � τc) with a distribution well fitted by a Gaussian; (b) an intermediate
regime (τb ∼ τc) with very low restitution coefficient (r = 0.5), fitted by an exp(−v3/2) curve;
(c) a strongly colliding regime fitted by an exponential distribution.

Noije [17]. Remarkably, we see from the right panel of figure 4 that our model in the regime
τc � τc is also able to reproduce the exponential tails exp(−v) expected by the theory of [17]
for ‘homogeneous cooling states’. However, it is worth noticing that the result was derived
with the assumption of spatial homogeneity, a condition violated by our simulations when the
system undergoes clustering.

To our knowledge, experimental measurements of velocity distributions have been
performed only recently and noticeably only for steady state granular systems under some
sort of energy injection. We recall some of the laboratory set-ups used where non-Gaussian
distribution have been observed:

(a) Vibration of the bottom of a 3D granular system [18].
(b) Vertical vibration of an horizontal plate with a granular monolayer on the top of it [19, 20].
(c) Vibration of the bottom side of an inclined plane with a very dilute granular monolayer

rolling on it, under the presence of gravity [21].
(d) Vibration of the bottom of a granular system confined in a vertical plane [22].
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Figure 5. Temperature fluctuations in a homogeneously driven granular gas, in 1D (left) and 2D
(right). In both figures the horizontal curves are obtained in a collisionless (or quasi-elastic) system,
while the inverse power laws are observed in a colliding inelastic case.

One of the arguments given by Goldhirsch [23] to explain the existence of a general
clustering instability starts from a heuristic estimate of the local temperature (granular
temperature Tg) as a function of particle density n and local shear rate:

Tg ∝ l2
0 ∝ n−2, (6)

where l0 is the particle mean free path. The above relationship remains meaningful at timescales
shorter than the decay time of the shear rate. Thus the local scalar pressure is supposed to
decrease at larger densities p = nTg ∝ n−1, implying an instability, because a positive
fluctuation in the number of particles, in a given region, causes a reduction in the local pressure
which attracts many other particles under the effect of pressure gradient. However, formula (6)
strictly holds in the cooling regime and does not apply to our driven system for which the relation
between local temperature Tg and local density is very different. Simulations, in fact, indicate
that the mean square velocity Tg(k), in the kth box, as a function of the number of grains mk

in that box, exhibits a more general power-law behaviour (the total volume has been divided
in M identical boxes). As expected, in the clustering regime, the distribution of the number
of particles in a box (cluster masses) presents a power-law decay with an exponential cut-off.
This induces also a non-trivial power-law behaviour in the relation Tg(k) versus mk as reported
in figure 5, where we see that in the collisionless (or elastic) regime the local temperature
remains nearly constant, and so does not depend upon the cluster mass m. In the inelastic
condition the local temperature appears to be a power of the cluster mass, Tg(m) ∼ m−β with
0 < β < 1. This relation ensures that the ‘clustering catastrophe’ (particles falling in an
inverted pressure region) cannot occur because the scalar pressure p = nTg ∝ n1−β increases
with the density since 1 − β is a positive exponent. Moreover, by using the previous result on
the fractal correlation dimension d2 (equation (5)), we can give an estimate of the length scale
dependence of the temperature. In fact, if we assume that the scaling relation for the temperature
is valid at different spatial scales, we can replace the density by the number of particles in the
expression for Tg, i.e. Tg(n) ∼ n−β . Since the local density is expected to follow the scaling
n(R) ∼ R−(d−d2), the local temperature follows the law Tg(R) ∼ Rβ(d−d2), and accordingly the
local pressure behaves like p(R) ∼ R−(1−β)(d−d2). In conclusion, the density and the pressure
both decrease with the length scale R, while the temperature increases. This scale dependence
of the macroscopic fields is evidently at odds with the possibility of separating mesoscopic
from microscopic scales and therefore the hydrodynamical description cannot be attempted.
The inability of granular temperature to play the same role of kinetic temperature in equilibrium
statistical physics (for example being equal to the temperature of the thermostat in the stationary
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Figure 6. Left: sketch of the non-homogeneous model with gravity and vibrating bottom. Right:
sketch of the non-homogeneous model with gravity and inclined bottom.

(This figure is in colour only in the electronic version)

asymptotic regime) is further demonstrated by models of granular mixtures [24]. Two granular
materials, fluidized by the same kind of homogeneous random driving mechanism, show up
different kinetic temperatures in agreement with experiments [25]. However, in the last section
of this paper, we discuss a toy model where the granular temperature recovers a role similar
to ‘thermal temperature’, making the situation even more complex.

3. Systems with a vibrating floor

Recent experiments [21] have investigated the effect of gravity on driven granular materials.
Gravity, as a uniform force field, has no consequences on relative velocities and thus on the
sequence of collisions. It simply accelerates the centre of mass of a granular gas and its action
becomes relevant only when studied in the presence of particular boundary conditions that
break the Galilean invariance (horizontal planes or plates). A plate has an important role in
disordering the velocity distributions especially when it vibrates in the presence of gravity
which, driving the grains toward the horizontal plates, makes the randomization process even
much efficient.

The left frame of figure 6 sketches the geometry set-up of an experiment conducted in [21]
consisting of a plane of size Lx × L y inclined by an angle θ with respect to the horizontal.
The top and the bottom wall confine particles to move in such a plane under the action of an
effective gravitational force ge = g sin θ . In our simulations, we reproduced the geometry and
applied periodic boundary conditions in the horizontal direction. We assumed that both the top
and the bottom walls of the plane are inelastic with a restitution coefficient rw . The transfer of
energy and momentum into the system is realized in our modelling through either sinusoidal or
stochastic (thermal) vertical vibrations of the bottom wall. In the first case a particle bouncing
onto this wall is reflected with a vertical velocity component: v′

y = −rwvy + (1 + rw)Vw,
where Vw = Awωw cos(ωwt) is the vibration velocity of the wall. In the second case, a
particle, after the collision against the wall, acquires randomly new velocity components

vx ∈ (−∞, +∞) and vy ∈ (0, +∞) with probability distributions P(vy) = vy

Tw
exp(− v2

y

2Tw
)

and P(vx ) = 1√
2πTw

exp(− v2
x

2Tw
), respectively, where Tw = (Awωw)2/2 is the mean energy

supplied by the wall to the gas in a period of oscillation.
For moderate vibration intensities, the model sets into an highly fluidized stationary

phase which resembles turbulence. The time evolution of density and velocity fields exhibits
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an intermittent-like behaviour characterized by rapid and large fluctuations, with sudden
explosions (bubbles) followed by the formation of large particle clusters travelling coherently
downwards under the action of gravity. In figure 7, we report the steady temperature profile
Tg(y) for our system as obtained from simulations; a minimum of Tg(y) is clearly visible near
y = 0, the position of the bottom wall. A parametric plot of the granular temperature Tg versus
the particle density n determines a power law Tg ∼ n−β which closely recalls the algebraic
tails already observed in the behaviour of the randomly driven model (section 2).

As before, the particle–particle correlation function is a useful indicator to quantify the
degree of spatial arrangement in the system. In this case, a suitable quantity to measure is the
particle–particle correlation function C�y(y, R) conditioned to the height y, i.e. computed
over the horizontal slab B(y,�y) = [y − �y/2, y + �y/2] × [0, Lx ]. Data collected
during simulations show a power-law behaviour C�y(y, R) ∼ Rd2(y) (figure 8). Again, for
homogeneous densities, d2 is expected to coincide with the topological dimension of the box
B(y,�y), so we obtained d2 = 1 for all the resolutions R � �y at which the box appears
as a ‘unidimensional’ stripe, while we found d2 = 2, at resolutions R � �y, because the
slab appears as a two-dimensional object. When the regime of inelastic collisions is switched
on, clustering processes, characterized by values of d2 lower than the topological dimension,
appear in some of the analysed stripes, as clearly seen by the three slopes of the log–log plot of
figure 8. These three power laws refer to three slabs at different heights (labelled by a, b and
c) and very different density conditions marked by the arrows in the inset showing the density
profile. When the density is not too high, the fit performed in the region R � �y always
yields an exponent smaller than 1.
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Figure 9. Left: collapse of horizontal velocity distributions in slabs a, b, c, d at different heights
(see the inset), for the model with gravity and vibrating bottom. The log-linear plot highlights the
non-Gaussian character of the tails. The inset displays the density profile as a function of the height
from the bottom wall. Labels a, b, c, d indicate the corresponding heights of the stripes chosen to
sample the velocity distributions. Right: horizontal velocity distributions for the same system with
two different inclination of the plate, i.e. with two different values of the effective gravity ge .

In the left frame of figure 9 we report the typical distributions of horizontal velocities for
particles belonging to stripes at different levels (densities) above the bottom wall (a, b, c, d
in the inset). The axis variables are properly rescaled to obtain a data collapse. Again, the
distributions appear to be non-Gaussian,and their broadening,namely the granular temperature
Tg(y), is height dependent. The same behaviour can be observed for both periodic or stochastic
vibrations. The right frame of figure 9 indicates that the distribution of horizontal velocities
becomes more and more Gaussian when the angle of inclination is increased. This trend
toward a Gaussian behaviour, in perfect agreement with experimental observations [21], is
a consequence of a large inclination, which, enhancing the collision rate against the wall,
favours the ‘randomization’ of velocities. According to the analogy between vibrating walls
and heating baths, this scenario is consistent with that observed for the randomly driven model
where larger ‘heating rates’ (decrease in τb/τc) determine a transition from a non-Gaussian to
a Gaussian regime.

4. Acceleration onto an inclined plane

In the context of non-homogeneous driven granular gases, we analysed a second more
interesting model [26], whose geometry is sketched in right frame of figure 6. The ‘set-
up’ consists of a two-dimensional channel of depth L y and length Lx , vertically confined by
a bottom and a top inelastic wall; periodic boundary conditions are applied in the direction
parallel to the flow. The channel is tilted up by an angle φ with respect to the horizontal
line, so gravity has both components gx = g sin φ and gy = g cos φ. This model mimics
the experiment performed by Azanza et al [27], where a stationary flow in a two-dimensional
inclined channel was observed at a point far from the source of the granular material. The
assumption of periodic boundary conditions in the flow direction is consistent with the observed
stationary regime reached upon the balance between gravity drift and damping effect due to
inelastic collisions.

Simulated density, velocity and temperature profiles well reproduce those measured in
experiments [27]. Indeed, they show the existence of a critical height, H ∼ 6σB, corresponding
to the separation between two different dynamical regimes. Below H , the profiles look almost
linear, especially the density and velocity ones, while above H the profiles rapidly change
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Figure 10. Left: density–density correlation function C�y(y, R) in stripes a, b, c at different
heights, as indicated in the inset, for the non-homogeneous model with an inclined bottom. The
inset shows the density profile versus the rescaled height y/rB and the letters a, b, c locate the
heights y (or densities) of the stripes a, b, c chosen to compute C�y(y, R). Right: horizontal
velocities probability distribution function in stripes at different heights for the same model. The
inset is as above.

and become nearly constant. These changes in the behaviour can be explained by the fact
that, below H , transport is mainly dominated by collisional exchange, while above H it is
mainly associated to ballistic flights. Again, our discussion focuses on the density correlations
C�y(y, R) computed in stripes at different densities (figure 10-left). Even in this system,
clustering effects show up, and they are quantified by a correlation dimension d2 ranging
from 1 in homogeneous stripes to 0.2 for highly clustered stripes.

The distribution of horizontal velocities in slabs at different heights are plotted in the right
frame of figure 10. The emergence of non-Gaussian behaviour is clearly evident, especially in
the case with rw < r and mainly in the stripes near the bottom wall. The classical rheological
model proposed by Jenkins and Richman [28] invokes a quasi-Gaussian equilibrium to calculate
the transport coefficients. The results of our simulations,however, suggest that, near the bottom
wall, the Gaussian approximation seems a very poor description of the real distribution. This is
not only a consequence of inelasticity but also an effect of the proximity to the boundary, where
high spatial gradients can easily bring the gas out of equilibrium. More recent derivations of
hydrodynamic equations [29, 30] use a Boltzmann-like approach for inelastic gases which
yields non-Gaussian velocity distributions: these theories pose a more solid basis and provide
much more reliable estimations of transport coefficients.

5. The problem of scale separation

The reliability of hydrodynamics in the description of fluidized granular gases has been
intensively probed through simulations and experiments suggesting, in some cases, a certain
range of validity which surprisingly extends to very inelastic regimes. However, even in
these lucky situations, the success is somehow lacking a rigorous foundation and addresses
the question ‘why does hydrodynamics work?’. Goldhirsch [23] for instance pointed out that
‘the notion of a hydrodynamic, or macroscopic description of granular materials is based on
unsafe grounds and it requires further study’. He argued that one of the main obstacles lies
in the absence of a sharp distinction between the spatio-temporal scales of the microscopic
dynamics and the relevant macroscopic scales. The aim of this section is to briefly review
his arguments on this fundamental issue. We recall that the validity of hydrodynamics and its
correct derivation is still a subject of debate, as recent discussions testify [32].
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A standard granular experiment involves about 103–105 grains and a container with
a linear size a few orders of magnitude larger than the typical size of grains. Therefore
the possibility of identifying an intermediate scale separating microscopic kinetics from
macroscopic hydrodynamics is rather doubtful. The lack of scale separation is not only a
mere experimental limitation, because in principle one can imagine experiments involving an
Avogadro’s number of grains and very large containers. It is of conceptual nature and not only
related to granular materials but also to molecular gases when subject to large shear rates or large
thermal gradients. In general, when the velocity or the temperature fields vary significantly over
a length of a mean free path, no scale distinction occurs between microscopic and macroscopic
scales; accordingly, the gas should be considered mesoscopic. In granular gases, this kind
of mesoscopicity is generic and not limited to the presence of strong forcing. Moreover,
phenomena like clustering, collapse and avalanches typical of granular dynamics strongly
violate the molecular chaos condition required by the Boltzmann approach. In mesoscopic
systems, fluctuations are expected to be larger, and by consequence the ensemble averages
of observables need not be representative of their typical values. Furthermore, in systems
without a true scale separation, like turbulent fluids or systems undergoing a second-order
phase transition, one expects that the constitutive relations relating fluxes to densities are scale
dependent.

The quantitative demonstration of the intrinsic mesoscopic nature of granular gases stems
from the equation Tg ∝ γ 2l2

0/(1 − r2) [31], relating the local granular temperature Tg to
the local shear rate γ and to the mean free path l0. The above relation holds until γ can be
considered a slow varying (decaying) quantity with respect to much more rapid damping rates
of the temperature fluctuations. Then, the ratio between the variation of the macroscopic
velocity δv ∼ γ l0 due to the shear and the thermal speed vT = √

T is proportional to√
1 − r2. Apart from very low values of 1 − r2, the shear rate is always large, and thus

the Chapman–Enskog expansion leading to the hydrodynamic theory for the system should
be generally carried out beyond the Navier–Stokes order. The above consideration is a direct
consequence of the supersonic nature of granular gases [23]. It is clear that a collision between
two particles moving in the same direction reduces their relative velocity but not the sum
of their momenta. In a number of such collisions, the velocity fluctuations may become
very small with respect to δv ∼ γ l0. We have to say that even the notion of mean free
path may become useless in a shear experiment because the mean square particle velocity
is given by γ 2 y2 + T (y being the direction of the shear). When y � √

T /γ , the distance
covered by a particle in the mean free time τ is l(y) = yl0γ /

√
T = y

√
1 − r2, which may

become much larger than the ‘equilibrium’ mean free path l0 and even greater than the system
size in the streamwise direction. The ratio between the mean free time τ = l0/

√
T and

the macroscopic characteristic time of the problem 1/γ is again proportional to
√

1 − r2.
Therefore a sharp separation between microscopic and macroscopic timescales rigorously
occurs only when r → 1 independently of system and grain sizes. Two serious problems
thus arise: (a) the fast local equilibration allowing for the use of equilibrium distributions as
zeroth-order approximations is not obvious; (b) the stability studies based on the linearization
of hydrodynamic equations become meaningless, since they predict instabilities on timescales
which hydrodynamics is not supposed to resolve.

Goldhirsch [23] has also shown that the absence of a neat distinction in space/timescales
implies a scale dependence of fields and fluxes; in particular, the pressure tensor depends on
the coarse graining resolution used to take local averages. This is similar to what happens, for
example, in turbulence, where the ‘eddy viscosity’ is scale dependent. Pursuing this analogy,
Goldhirsch has noted that an intermittent behaviour can be observed in the time series of
experimental and numerical measures of the pressure tensor. Single collisions, which are
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usually averaged out in molecular systems, appear in granular systems as ‘intermittent events’
affecting the time behaviour of relevant observables.

6. Granular temperature in a simple double-well model

So far, through the review of some models of inelastic gases, we have given evidence for
the non-thermodynamics nature of the parameter Tg called ‘granular temperature’. We have
indeed shown that Tg is usually different from the thermostat temperature; it can be very
inhomogeneous even in homogeneously driven systems and may strongly depend upon the
scale of observation. Finally, we have mentioned the fact that, in granular mixtures, Tg does
not govern the energy balance. In this section we want to show that Tg still maintains the role
of parameter controlling the characteristic times of the granular dynamics. Here we discuss a
simple toy model in which the main ingredient of granular gases, the inelasticity, is at work, but
the dynamics is characterized by a timescale determined by the granular temperature through
an Arrhenius-like formula [33].

The model consists of two inelastic hard rods (the simplest granular gas) constrained to
move on a line under the effect of a bistable external potential U(x) = −ax2/2 + bx4/4. The
system is coupled to a bath which exerts upon particles a velocity-dependent friction and a
random force. In the absence of collisions, the particles evolve according to

M
d2xi

dt2
= −Mγ

dxi

dt
− U ′(xi) + ξi (t) (7)

where the prime indicates the spatial derivative, xi (i = 1, 2) represents the position of
particles, γ is a friction coefficient and ξi (t) is the stochastic driving force with variance
∝ Tb.

The basic phenomenology of the model is illustrated in figure 11. The relative particle
distance, y = x2 − x1, fluctuates in time showing time intervals of average lifetime τ2, when
particles are confined to the same well (y ∼ d) alternated with intervals, of average lifetime
τ1, when particles sojourn in separate wells. The dynamics is dominated by two competing
effects, the dissipation in the collisions and the excluded volume. The first brings the particles
together in the same well (clustering) while the other favours their staying apart in different
wells. These two opposite effects are responsible for the existence of τ1 and τ2 as different
timescales. Figure 12 shows that τ2 and τ1 follow an Arrhenius behaviour with a suitable
parameter renormalization with respect to the independent particle problem:

τk ≈ exp

[
Wk

Tk

]
, (8)

where k = (1, 2) indicates single or double occupation of a well, W1 = �U (�U being
the energy barrier between the wells) and W2 = �U − δU < �U . The correction δU to
the energy barrier �U amounts to a(d/2)2 + b/4(d/2)4 and takes into account the effect of
the excluded volume repulsion. When two grains belong to the same well their centre of
mass lies higher than if they were in separate wells, therefore each grain experiences a lower
(effective) energy barrier. This is a typical correlation effect, because the repulsion makes the
double occupancy of a well less likely, with respect to the non-interacting case. The smaller
the ratio of the well width to the particle diameter, the stronger the reduction of the escape
time [34, 35]. In figure 12 and the related inset, the reader can see that the plots of τ1 and τ2

of the inelastic system (dark symbols) intersect at a certain temperature Tb = Tc. Below Tc

the time τ2 becomes smaller than τ1. The origin of this crossover lies in the fact that, in the
inelastic system, temperatures T2 and T1 are no longer equal to Tb, and furthermore T2 < T1.
Thus, the mean lifetime of the clustering regimes can still be described by expression (8), but



S2728 A Puglisi et al

3500 4000 4500 5000 5500
t

0

2

4

6

8

10

12

14

x 2-x
1

τ
2

τ
1

0.05 0.1 0.15 0.2 0.25 0.3 0.35
1/T

b

10
0

10
1

10
2

10
3

τ
0.04 0.06 0.08 0.1

1/T
b

4

6

8

τ

Figure 11. Relative distance x2 − x1 as a function of
time for a system with r = 0.9 and Tb = 4.0. The solid
line indicates the diameter of the rods d = 0.1, while
the dashed line marks the well separation L � 10.95 (for
potential parameters a = 0.5 and b = 0.01).

Figure 12. Arrhenius plot of mean escape times τ .
Open symbols refer to the elastic case: the escape
time is τ1 (circles) when a well is singly occupied,
τ2 (squares) when a well is doubly occupied. Full
symbols correspond to the inelastic system (r = 0.9).
Linear behaviour indicates the validity of Kramer’s theory
with renormalized parameters, and the slopes agree with
values obtained from equation (8). Inset: enlargement of
the crossover region where τ2 becomes smaller than τ2.
The arguments of the exponentials (dashed lines) in the
same figure have been obtained by formula (8).

now the granular effect competes with the excluded volume correction, eventually leading to
τ1 > τ2.

A simple argument can be used to estimate the shift of T2 from Tb. For moderate driving
intensity, T1 is nearly equal to Tb, while T2 is lower than Tb by a factor which depends on
the inelasticity. Simulations show that T2 varies linearly with Tb and its slope is a decreasing
function of the inelasticity (1 − r). A good estimate of temperature T2 can be obtained by
an energy balance argument when the two particles belong to the same well regarded as an
harmonic well V (x) = ω2

minx2/2. The average power per particle satisfies the balance equation

dE

dt
= 2γ (Tb − T2) +

δEc

2τc
(9)

where 2γ (Tb − T2) stems from the competition between the viscous damping (−2γ T2) and
the power supplied by the stochastic driving (2γ Tb), while the last term on the right-hand side
of equation (9) estimates the mean power dissipated in each collision, τc being the typical
collision time. From the rule (3) applied in 1D, we have δEc = −(1 − r2)(v2 − v1)

2/4. At
stationarity, we expect that dE/dt ∼ 0, thus

T2 = Tb − 1 − r2

8γ τc
(v2 − v1)2.

Assuming that the precollisional velocities v1 and v2 are nearly independent, we can
approximate (v2 − v1)2 � 〈v2

1〉 + 〈v2
2〉 = 2T2.

The collision time τc is estimated through the oscillation frequency in the harmonic well
τc = π/ωmin, where the factor 1/2 stems from the excluded volume effect. Finally, we write
the formula

T2 = Tb

1 + q(1 − r2)
(10)
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for the granular temperature, with q = ωmin/(4πγ ). The knowledge of T2 and �U
characterizes the jump dynamics of the system across the energy barrier even when it is
inelastic. Numerical simulations of equations (7) verify the relation (10) very well.

This simple example demonstrates that the granular temperature, even if cannot control the
‘equilibrium’ behaviour of a granular gas, fairly determines the typical dynamical timescales
of the system.

7. Conclusions

We have summarized the main lines of research carried out during recent years on granular
gases. This paper focuses on the theoretical basis of a fluid-like description of granular
systems under strong external forcing. In experiments, the behaviour of a granular gas strongly
resembles that of a fluid. However, it is never at thermal equilibrium and, even though a kinetic
temperature can be defined and measured, it has not the same role of equilibrium temperature.
Moreover, many conceptual concerns, such as the absence of space and timescale separation,
suggest that the hydrodynamics is well posed only in a limited range of parameters. We have
introduced a family of models of granular gases under external forcing to investigate these
issues. Such models, addressing different physical situations,present common features: strong
correlated density fluctuations (clustering), non-Gaussian behaviour of velocity distributions
with heavy tails, and lack of energy equipartition or thermalization. The first model, an
inelastic gas under external stochastic driving, is of course the simplest and most idealized, but
it displays all these features straightforwardly, demonstrating that the main ingredient leading
to such anomalous behaviour is simply the inelasticity.

However, the situation is not so hopeless: kinetic theories (used to build hydrodynamics)
work in the neighbourhood of the elastic limit, when all the above problems appear in a mild
form. More surprisingly, there are cases where some predictions of usual statistical mechanics
and thermodynamics are also reliable in strong inelastic conditions. We considered, as an
example, the dynamics of a couple of granular particles in a double well potential, which again
can be characterized by an Arrhenius behaviour provided that the environment temperature is
replaced by the granular temperature. Furthermore, some of us [36, 37] have also shown that
Green–Kubo relations for the response to linear perturbation are still valid, again substituting
granular temperature for external bath temperature (there have been several attempts to derive
Green–Kubo relations for granular gases; see for example [38]). Both these results are quite
intriguing because they appear to be valid in strongly out-of-equilibrium regimes.
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[3] Pöschel T and Brilliantov N V (ed) 2003 Granular Gas Dynamics (Springer Lecture Notes in Physics vol 624)

(Berlin: Springer)
[4] Du Y, Li H and Kadanoff L P 1995 Breakdown of hydrodynamics in a one-dimensional system of inelastic

particles Phys. Rev. Lett. 74 1268
[5] Sela N and Goldhirsch I 1995 Hydrodynamics of a one-dimensional granular medium Phys. Fluids 7 507
[6] Kadanoff L P 1999 Built upon sand: theoretical ideas inspired by granular flows Rev. Mod. Phys. 71 435
[7] Jaeger H M, Knight J B, Liu C-h and Nagel S R 1994 What is shaking in the sandbox? Mater. Res. Bull. (May)

25
[8] Knight J B, Fandrich C G, Lau C N, Jaeger H M and Nagel S R 1995 Density relaxation in a vibrated granular

material Phys. Rev. E 51 3957
[9] Puglisi A, Loreto V, Marini-Bettolo-Marconi U, Petri A and Vulpiani A 1998 Clustering and non-Gaussian

behavior in granular matter Phys. Rev. Lett. 81 3848
[10] Puglisi A, Loreto V, Marini-Bettolo-Marconi U and Vulpiani A 1999 A kinetic approach to granular gases Phys.

Rev. E 59 5582



S2730 A Puglisi et al

[11] Williams D R M and MacKintosh F C 1996 Driven granular media in one dimension: correlations and equations
of state Phys. Rev. E 54 R9–12

[12] van Noije T P C, Ernst M H, Trizac E and Pagonabarraga I 1999 Randomly driven granular fluids: large scale
structures Phys. Rev. E 59 4326

[13] Kubo R, Toda M and Hashitune N 1978 Statistical Physics II: Nonequilibrium Statistical Mechanics (Berlin:
Springer)

[14] Bird G A 1994 Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Oxford: Clarendon)
[15] Cecconi F, Diotallevi F, Marini-Bettolo-Marconi U and Puglisi A 2004 Fluid-like behavior of a one-dimensional

granular gas J. Chem. Phys. 120 35
[16] Grassberger P and Procaccia I 1983 Characterization of strange attractors Phys. Rev. Lett. 50 346
[17] van Noije T P C and Ernst M H 1998 Velocity distributions in homogeneously cooling and heated granular fluids

Granular Matter 1 57
[18] Losert W, Cooper D G W, Delour J, Kudrolli A and Gollub J P 1999 Velocity statistics in excited granular media

Chaos 9 682
[19] Olafsen J S and Urbach J S 1998 Clustering, order and collapse in a driven granular mono-layer Phys. Rev. Lett.

81 4369
[20] Olafsen J S and Urbach J S 1999 Velocity distributions and density fluctuations in a 2D granular gas Phys. Rev.

E 60 R2468
[21] Kudrolli A and Henry J 2000 Non-Gaussian velocity distributions in excited granular matter in the absence of

clustering Phys. Rev. E 62 R1489
[22] Rouyer F and Menon N 2000 Velocity fluctuations in a homogeneous 2D granular gas in steady state Phys. Rev.

Lett. 85 3676
[23] Goldhirsch I 1999 Scales and kinetics of granular flows Chaos 9 659
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